Standard Talk (15 mins) Australian Society for Fish Biology Conference 2022

Forensic odontology: Assessing bite wounds to determine the role of teeth in piscivorous fishes (#21)

Pooventhran Muruga 1 2 3 , David R Bellwood 1 2 3 , Michalis Mihalitsis 1 2 3
  1. Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
  2. College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
  3. Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia

Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilised in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behaviour during feeding however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioural traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorise bite damage on prey fish that were extracted from piscivore stomachs immediately after being ingested. We then assess the significance of morphological and behavioural traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behaviour damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilisation) in piscivorous fishes.